External Validation of a Deep-Learning-Based Hip Fracture Prognosis Pipeline (#253)
Niklas Christoph Koser
1
,
Eren Bora Yilmaz
1
2
,
Carolina Ramirez
3
,
Emma Bahroos
3
,
Sharmila Majumdar
3
,
Claus-C. Glüer
1
- i²Lab@Section Biomedical Imaging, Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Schleswig-Holstein, Germany
- Dept. of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Niedersachsen, Germany
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
Publish consent withheld
- Damm, Timo, et al. "Artificial intelligence-driven hip fracture prediction based on pelvic radiographs exceeds performance of DXA: the" Study of Osteoporotic Fractures"(SOF)." Journal of Bone and Min-eral Research. Vol. 37. 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY, 2022.
- Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- University of California, San Francisco, Academic Research Systems (2022). UCSF DeID CDW-OMOP. 2023-November. University of California, San Francisco. Dataset. Available through https://data.ucsf.edu/research/deid-data.